Spectral Analysis of a Preconditioned Iterative Method for the Convection-Diffusion Equation

نویسندگان

  • Daniele Bertaccini
  • Gene H. Golub
  • Stefano Serra Capizzano
چکیده

The convergence features of a preconditioned algorithm for the convection-diffusion equation based on its diffusion part are considered. Analyses of the distribution of the eigenvalues of the preconditioned matrix in arbitrary dimensions and of the fundamental parameters of convergence are provided, showing the existence of a proper cluster of eigenvalues. The structure of the cluster is not influenced by the discretization. An upper bound on the condition number of the eigenvector matrix under some assumptions is provided as well. The overall cost of the algorithm is O(n), where n is the size of the underlying matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

Superlinear Convergence of a Preconditioned Iterative Method for the Convection-diffusion Equation

The convergence features of a preconditioned algorithm for the convection-diffusion equation based on its diffusion part are considered. An analysis of the distribution of the eigenvalues of the preconditioned matrix and of the fundamental parameters of convergence are provided, showing the existence of a proper cluster of eigenvalues and the superlinear behavior of preconditioned iterations. T...

متن کامل

On the Behavior of Combination High-Order Compact Approximations with Preconditioned Methods in the Diffusion-Convection Equation

In this paper, a family of high-order compact finite difference methods in combination preconditioned methods are used for solution of the Diffusion-Convection equation. We developed numerical methods by replacing the time and space derivatives by compact finitedifference approximations. The system of resulting nonlinear finite difference equations are solved by preconditioned Krylov subspace m...

متن کامل

Preconditioned HSS Method for Finite Element Approximations of Convection-Diffusion Equations

A two-step preconditioned iterative method based on the Hermitian/Skew-Hermitian splitting is applied to the solution of nonsymmetric linear systems arising from the Finite Element approximation of convection-diffusion equations. The theoretical spectral analysis focuses on the case of matrix sequences related to FE approximations on uniform structured meshes, by referring to spectral tools der...

متن کامل

Preconditioned iterative methods and finite difference schemes for convection-diffusion

We conduct experimental study on numerical solution of the two dimensional convection-diiusion equation discretized by three nite diierence schemes: the traditional central diier-ence scheme, the standard upwind scheme and the fourth-order compact scheme. We study the computed accuracy achievable by each scheme, the algebraic properties of the coeecient matrices arising from diierent schemes an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2006